Big O Notation Cheat Sheet



When measuring the efficiency of an algorithm, we usually take into account the time and space complexity. In this article, we will glimpse those factors on some sorting algorithms and data structures, also we take a look at the growth rate of those operations.

  • Big-O Cheat Sheet. It provides a table that gives Big-Θ and Big-O complexities for a set of common operations on range of data structures, as well Big-Ω, Big-Θ, and Big-O for various array sorting algorithms. I'm thinking about buying the poster.
  • Big O Notation Cheat-Sheet. Alternative Big O notations: O(1) = O(yeah). Big O Notation describes an execution limitation of a function, given an argument tends.

.NET Big-O Algorithm Complexity Cheat Sheet. Shows Big-O time and space complexities of common algorithms used in.NET and Computer Science. You can see which collection type or sorting algorithm to use at a glance to write the most efficient code. Big o cheatsheet with complexities chart Big o complete Graph!Bigo graph1 Legend!legend3!Big o cheatsheet2!DS chart4!Searching chart5 Sorting Algorithms chart!sorting chart6!Heaps chart7!graphs chart8. HackerEarth is a global.

Big-O Complexity Chart

First, we consider the growth rate of some familiar operations, based on this chart, we can visualize the difference of an algorithm with O(1) when compared with O(n2). As the input larger and larger, the growth rate of some operations stays steady, but some grow further as a straight line, some operations in the rest part grow as exponential, quadratic, factorial.

Sorting Algorithms

In order to have a good comparison between different algorithms we can compare based on the resources it uses: how much time it needs to complete, how much memory it uses to solve a problem or how many operations it must do in order to solve the problem:

  • Time efficiency: a measure of the amount of time an algorithm takes to solve a problem.
  • Space efficiency: a measure of the amount of memory an algorithm needs to solve a problem.
  • Complexity theory: a study of algorithm performance based on cost functions of statement counts.

C++ Big O Notation Cheat Sheet

Sorting AlgorithmsSpace ComplexityTime Complexity
Worst case Best case Average case Worst case

Bubble Sort
O(1)O(n)O(n2)O(n2)
HeapsortO(1)O(n log n)O(n log n)O(n log n)
Insertion SortO(1)O(n)O(n2)O(n2)
MergesortO(n)O(n log n)O(n log n)O(n log n)
QuicksortO(log n)O(n log n)O(n log n)O(n log n)
Selection SortO(1)O(n2)O(n2)O(n2)
ShellSortO(1)O(n)O(n log n2)O(n log n2)
Smooth SortO(1)O(n)O(n log n)O(n log n)
Tree SortO(n)O(n log n)O(n log n)O(n2)
Counting SortO(k)O(n + k)O(n + k)O(n + k)
CubesortO(n)O(n)O(n log n)O(n log n)
Notation

Big O Notation Practice Problems

Data Structure Operations

In this chart, we consult some popular data structures such as Array, Binary Tree, Linked-List with 3 operations Search, Insert and Delete.

Data StructuresAverage CaseWorst Case
SearchInsertDeleteSearchInsertDelete
ArrayO(n)N/AN/AO(n)N/AN/A
AVL TreeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
B-TreeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
Binary SearchTreeO(log n)O(log n)O(log n)O(n)O(n)O(n)
Doubly Linked ListO(n)O(1)O(1)O(n)O(1)O(1)
Hash tableO(1)O(1)O(1)O(n)O(n)O(n)
Linked ListO(n)O(1)O(1)O(n)O(1)O(1)
Red-Black treeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
Sorted ArrayO(log n)O(n)O(n)O(log n)O(n)O(n)
StackO(n)O(1)O(1)O(n)O(1)O(1)
Big 0 notation cheat sheet

N In Big O Notation Cheat Sheet

Growth of Functions

The order of growth of the running time of an algorithm gives a simple characterization of the algorithm’s efficiency and also allows us to compare the relative performance of alternative algorithms.

Big O Notation Cheat Sheet Pdf

Below we have the function n f(n) with n as an input, and beside it we have some operations which take input n and return the total time to calculate some specific inputs.

Big
n f(n)log nnn log nn22nn!
100.003ns0.01ns0.033ns0.1ns1ns3.65ms
200.004ns0.02ns0.086ns0.4ns1ms77years
300.005ns0.03ns0.147ns0.9ns1sec8.4×1015yrs
400.005ns0.04ns0.213ns1.6ns18.3min
500.006ns0.05ns0.282ns2.5ns13days
1000.070.1ns0.644ns0.10ns4×1013yrs
1,0000.010ns1.00ns9.966ns1ms
10,0000.013ns10ns130ns100ms
100,0000.017ns0.10ms1.67ms10sec
1’000,0000.020ns1ms19.93ms16.7min
10’000,0000.023ns0.01sec0.23ms1.16days
100’000,0000.027ns0.10sec2.66sec115.7days
1,000’000,0000.030ns1sec29.90sec31.7 years